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Scale invariance (scaling) in a time series of an observable quantity is a symmetry law
which when it exists can provide unique insights about the process in question. It
describes variability and transitions at all scales and is often a result of nonlinear
dynamics. It is well known that the spectra of atmospheric and climatic variables
possess considerable power at low frequencies. Since "red" spectra often associate
with scaling processes, it is reasonable to suppose that a search for scaling laws in
climatic data might be fruitful. Consequently, the search for scaling in such data over
the past decade has produced some exciting ways to describe climate variability. In
the past and lately, there has been a growing interest in the existence of uniform in
space temporal scaling laws for observable properties of the climate system, since such
a property would provide a common rule describing temporal variability everywhere
on the globe. Here we show that in spatially extended systems, uniform in space
scaling demands that global averages be time invariant. A corollary to this is that
where global averages do exhibit temporal variability, as in our climate system, spatial
variation in scaling properties is required.

1 Introduction

A scaling (fractal) process y(t) satisfies the relationship y( t) =d0a-y( Xt) where =d

indicates equality in distribution and ;, X>O. This relationship indicates that the
statistical properties at time scale t are related to the statistical properties at time scale Xt.

Consequently, any moment of order k, 9%', satisfies the relation t'k( t) =&-i'k ( Xt) . It

is easy to show that the power law g'( t) =At' with H=logay/logX is a solution to the

last equation (Triantafyllouet al. 1).
Recently, new approaches based on the theory of random walks have been developed

to elucidate scaling in time series (Tsonis and Elsner 2 , Viswanathan et al.3). According to
these approaches a time series x(t) representing some observable (temperature, pressure,
etc.) is mapped onto a random walk whose net displacement, y(t), after t time steps is

defined by the running sum y( t) = • x( i) . For any walk a suitable statistical quantity
i =1

that characterizes the walk is the root mean square fluctuation about the average

displacement F2(t) = [ Ay(t) 1 2 _[ Ay(t) ] 2, where Ay(t) = y( to+t) - y(t ) and the
bars indicate an average over all positions to in the walk. The calculation of F(t) can

distinguish three types of behavior: 1) uncorrelated time series described by F(t) otH with
H=0.5 as expected from the central limit theorem; 2) time series exhibiting positive long-
range correlations described by F(t) _tH with H > 0.5; and 3) time series exhibiting
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negative long-range correlations described by F(t) c-tH with H<0.5. Markov processes with
local correlations extending up to some scale also give H=0.5 for sufficiently large t. It is
well known (Feder 4) that the correlation function C(t) of future increments, y(t), with past
increments, y(-t), is given by C(t) =2( 2-' - 1) . For H=0.5, we have C(t)=0 as
expected, but for H#0.5 we have C(t)•0 independent of t. This indicates infinitely long
correlations and leads to a scale-invariance (scaling) associated with positive long-range
correlations for H>0.5 (i.e. an increasing trend in the past implies an increasing trend in
the future) and to scaling associated with negative long-range correlations for H<0.5 (i.e.
an increasing trend in the past implies a decreasing trend in the future). Random walks
with H#0.5 are referred to as fractional Brownian motions (fBms). In theory the exponent
H is related to the spectra of the y(t) function via a relation of the form S(f) _~f-dn+H) and to

the spectra of the x(t) function via a relation of the form S(f) _ f-2H+1 where f is the

frequency.

2. Analysis and results

Let us assume that records of some meteorological variable exist at a sufficiently large
number of stations (m) evenly distributed over the globe. Let us further assume that all
those stations obey the spatially uniform scaling law F(t)- tH with the same exponent H. If
xj(t), j=l,m are the records of the stations, then the global (planetary) mean of those
records, xg(t), is given by:

1 m
Xg (t) =--• E xjot (1)

"M"j=l

It follows that the displacement of the random walk generated by the global mean

record is:

t t am 1 m [rt (

Yg~ xgi)= ( {)E G) I E x L (i)J (2)
i=1 i=I j== i=1

The sum in the bold brackets is the displacement of the walk for a particular station.
Since we have assumed that at each station the records obey the law F(t)- tH with the same
H, then the outer sum is zero (as it represents the average displacement after n time steps
of many random walkers with the same exponent). In this case the above equation reduces
to yg(t)=O which will indicate that the global mean xg(t) is also zero at any time.

This theoretically derived result can be verified by simple computer simulations.
Consider m stations at which some variable y has been observed and that this quantity
scales with the law F(t)- tH with H=0.7 at all stations. For illustrative purposes, we have
generated such a function y(t) for m stations by inverting power spectra of the form
f-(2H+l). The formula used to generate y(t) functions for t= 1, N is given by

y(t)= E [Ck-a(--N) 1-a]al cos (2nttk/N++k) where C is a constant, N is the sample
k=1

size, 0k are N/2 random phases uniformly distributed in [0, 27r], and a=2H + 1

(Osborne and Provenzale 5 ; Tsonis 6). Then using y( t) = • x( i) the time series x(t) for
i~l

each station was produced. From all the available stations we then estimated the global
mean xg(t) for two sample sizes m (Figure 1). For m=10 the global mean fluctuates
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significantly above zero but as m increases the global mean tends at all times to zero. This
result demonstrates the theoretical proof provided by equation (2) that a spatially uniform
scaling law requires time invariance in the global mean. This behavior is manifestly
counter to that of our climate system, which exhibits nonlinearities and variability at all
time scales. Indeed, in a recent study it was shown that for the global temperature record
the relation between yg(t) and t involves multiple temporal scaling regimes (Tsonis et
al.7).

3. Discussion

To those familiar with the theory of random walks this result may not be surprising.
Nevertheless, due to limitations in data and other shortcomings, applying these ideas to
problems in physical sciences is often misguided and the wrong conclusions are drawn
(Koscienly-Bunde et al.8). From the above, it follows that in spatially extended systems
displaying variability at all time scales temporal scaling must vary in space. The spatial
distribution of scaling must, in some way, reflect the dynamics of the system. For the
climate system, spatial variation in scaling has been clearly demonstrated in a recent study
of the 500 hPa height field, which is hydrostatically linked to the mean temperature of the
lower troposphere (Tsonis et al. 9). In this work, local scaling patterns were linked to
specific properties of the atmospheric general circulation (baroclinic instability, storm
tracks and persistence of circulation anomalies).
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Figure 1. Simulated global mean value from m stations each one of them obeying the
scaling law F(t)- tH with H=0.7 (see text for details).
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